Real-Time Scale Invariant 3D Range Point Cloud Registration
نویسندگان
چکیده
Stereo cameras, laser rangers and other time-of-flight ranging devices are utilized with increasing frequency as they can provide information in the 3D plane. The ability to perform real-time registration of the 3D point clouds obtained from these sensors is important in many applications. However, the tasks of locating accurate and dependable correspondences between point clouds and registration can be quite slow. Furthermore, any algorithm must be robust against artifacts in 3D range data as sensor motion, reflection and refraction are commonplace. The SIFT feature detector is a robust algorithm used to locate features, but cannot be extended directly to the 3D range point clouds since it requires dense pixel information, whereas the range voxels are sparsely distributed. This paper proposes an approach which enables SIFT application to locate scale and rotation invariant features in 3D point clouds. The algorithm then utilizes the known point correspondence registration algorithm in order to achieve real-time registration of 3D point clouds.
منابع مشابه
Scale Invariant Robust Registration of 3D-Point Data and a Triangle Mesh by Global Optimization
A robust registration of 3D-point data and a triangle mesh of the corresponding 3D-structure is presented, where the acquired 3Dpoint data may be noisy, may include outliers and may have wrong scale. Furthermore, in this approach it is not required to have a good initial match so the 3D-point cloud and the according triangle mesh may be loosely positioned in space. An additional advantage is th...
متن کاملA New Point Matching Algorithm for Panoramic Reflectance Images
Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. The most important part of registration is finding correspondence. The panoramic reflectance images are generated according to the angular coordinates and reflectance value of each 3D point of 360° full scans. Since it is si...
متن کاملA novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملAutomatic Procedure for the Registration of Thermographic Images with Point Clouds
This paper presents a procedure for the automatic registration of thermographies with laser scanning point clouds. Given the heterogeneous nature of the two modalities, we propose a feature-based approach, satisfying the requisite that extracted features have to be invariant not only to rotation, translation and scale but also to changes in illumination and dimensionality. As speed and minimum ...
متن کاملFine scale image registration in large-scale urban LIDAR point sets
Urban scenes acquisition is very often performed using laser scanners onboard a vehicle. In parallel, color information is also acquired through a set of coarsely aligned camera pictures. The question of combining both measures naturally arises for adding color to the 3D points or enhancing the geometry, but it faces important challenges. Indeed, 3D geometry acquisition is highly accurate while...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010